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We present shape-preserving spatially accelerating electromagnetic wave packets in curved space: wave
packets propagating along nongeodesic trajectories while periodically recovering their structure. These
wave packets are solutions to the paraxial and nonparaxial wave equations in curved space. We analyze the
dynamics of such beams propagating on surfaces of revolution, and find solutions that propagate along a
variety of nongeodesic trajectories, with their intensity profile becoming narrower (or broader) in a scaled
self-similar fashion. Such wave packets reflect the interplay between the curvature of space and
interference effects. Finally, we extend this concept to nonlinear accelerating beams in curved space
supported by the Kerr nonlinearity. Our study concentrates on optical settings, but the underlying concepts
directly relate to general relativity.
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The complex dynamics of particles and of electromag-
netic (EM) waves in curved space-time is still inaccessible
to laboratory experiments. However, numerous physical
systems have been suggested to demonstrate analogies of
general-relativity phenomena, ranging from sound and
gravity waves in flowing fluids [1–3] to Bose-Einstein
[4–6] and optical systems, which have had a major success
in demonstrating such phenomena [7–13]. For example,
metamaterials enabled creating analogies to black holes,
by engineering the (EM) properties of the material through
which light is propagating [8–10]. Another example is
using a moving dielectric medium that acts as an effective
gravitational field on the light [12]. This idea was dem-
onstrated experimentally by employing ultrashort pulses in
an optical fiber to create an artificial event horizon [13].
Another route for such studies is to create curved space by
engineering the geometry of the space itself. This idea,
suggested in 1981 [14], started by exploring the dynamics
of a free quantum particle constrained by an external
potential to evolve within a thin sheet. More than 25 years
later, these ideas were carried over to EM waves [15],
where pioneering experiments studied light propagating in
a thin-film waveguide attached to the curved surface area
of a three-dimensional (3D) body [16]. However, thus far,
in all of these experiments and theoretical studies on
general-relativity concepts with EM waves, the wave
packets were propagating on geodesic trajectories, which
are naturally the shortest path, analogous to straight lines in
flat geometry. But, do wave packets propagating in curved
space have to follow special geodesic paths, or can they

exhibit other trajectories that are not predicted by the
geodesic equation?
Here, we show that wave packets can exhibit periodically

shape-invariant spatially accelerating dynamics in curved
space, propagating in nongeodesic trajectories that reflect
the interplay between the curvature of space and interfer-
ence effects arising from initial conditions. We study these
beams in surfaces of revolution in the linear and nonlinear,
paraxial and nonparaxial regimes and unravel a variety of
new intriguing properties that are nonexistent in flat space.
This study paves the way to accelerating-beams experi-
ments in curved space to study basic concepts of general
relativity, where the entire dynamics is nongeodesic.
Before proceeding, we briefly recall the ideas underlying

accelerating wave packets. They were first revealed in
1979 as a unique solution to the Schrödinger equation: a
propagation-invariant wave packet shaped as an Airy
function that accelerates in time [17]. Almost 30 years
later, the concept of accelerating wave packets was intro-
duced into electromagnetism, demonstrating Airy beams
that are spatially accelerating within the paraxial approxi-
mation [18,19]. Following Refs. [18,19], accelerating wave
packets have drawn extensive interest and initiated many
new ideas, such as accelerating ultrashort pulses and light
bullets [20–22], two-dimensional (2D) accelerating beams
[23], accelerating beams following arbitrary convex accel-
eration trajectories [24–26], accelerating beams in photon-
ics potentials [27–30], and accelerating beams in nonlinear
media [31–34]. These recent works were followed by many
applications such as manipulating microparticles [35,36],
self-bending plasma channels [37], and accelerating elec-
tron beams [38]. For some time, shape-preserving accel-
erating wave packets were believed to exist strictly within
the domain of the Schrödinger-type paraxial wave equation
[17–19]. However, in 2012, we presented accelerating
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shape-invariant wave packets that are exact solutions of
Maxwell’s equations [39]. Experimental demonstrations of
such beams followed soon thereafter [40–42], along with
further theory and experiments demonstrating additional
families of nonparaxial accelerating beams [43–45]. Thus
far, however, accelerating wave packets remained strictly
within the realm of flat space.
Since the dynamics of EM waves in curved space is

significantly different from that in flat space, a natural
question to ask is whether accelerating wave packets can
exist at all in curved space, and if they do, how do their
features differ from those in flat space? In other words, are
there wave packets that travel along nongeodesic trajecto-
ries in free space without contradicting the basic concepts
of general relativity?
Consider EM waves that are restricted to exist in a 2D

curved surface. This physical situation can be achieved by
covering the surface area of a 3D shape (a sphere, for
example) with a thin homogenous layer of a material with a
higher refractive index. Such a layer acts as a waveguide,
keeping the light confined inside it due to total internal
reflection (Fig. 1). The dynamics of EM fields in curved
space can be described by the 3D Maxwell equations in
general coordinates [46]:
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Here, g is the time-independent spatial metric determinant,
where ds2 ¼ gαβdxαdxβ (the spatial indices α, β, and γ run

from 1 to 3), εαβγ is the antisymmetric Levi-Civita tensor,
andEα,Hα,Dα, andBα are three-vectors. Thewave equation
for the electric field is derived from Eqs. (1) [15]:
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where the polarization Pα ≡Dα − Eα can generally be
nonlinear in the electric field. Notice that the second term
does not appear in homogenous flat space: It arises strictly
due to the curved-space geometry.
We are interested in the evolution of the electric field in

a general surface of revolution. First, we introduce the
metric of such a surface. These surfaces are parametrized
by ~sðu; vÞ ¼ ½αðuÞ cosðvÞ; αðuÞ sinðvÞ; βðuÞ�, where v¼
½−π;π� is the angle of rotation and−∞ < u < ∞ is a general
parametrizationof the surface along its axis of the revolution.
Every point in 3D space (~r) can be described by the
two coordinates on the curved surface ðu; vÞ and a third
coordinate (h) normal to the surface at every point:
~rðu; v; hÞ ¼ ~sðu; vÞ þ h ~Nðu; vÞ, where ~Nðu; vÞ is the unit
vector normal to the surface (Fig. 1). We transform to a
new set of coordinates: z ¼ R

z
0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
α02ðuÞ þ β02ðuÞ

p
du and

x ¼ R0v, where R0 is defined by the radius of the surface
at z ¼ 0, R0 ¼ αð0Þ, and x has units of length in the
transverse direction at z ¼ 0. The metric takes the form
dl2 ¼ dz2 þ fα2½uðzÞ�=R0

2gdx2 ≜ dz2 þ γdx2, where γ is
defined as the dimensionless 2D metric determinant. As in
Ref. [15], we decouple the wave equation for the different
polarizations [14]. This procedure can be done for surfaces
that have small enough Gaussian and mean curvatures, and
that their mean curvature varies on scales that are large
compared with the wavelength. For example, for a wave-
length in the visible range, the radius of curvature of such a

FIG. 1. (b) Sketch of a surface of revolution (cone). The EM field is restricted to propagate within the surface area by a thin waveguide
layer. (a)–(c) The evolution of the envelope of an accelerating beam (ψ) on the surface area of a cone (a) and of an hyperboloid (both
with 10-cm height, 3-mm base radius, and a propagation constant of 1.2e7 m−1). (c) The dashed white line displays the propagation of
the same beam in flat space, projected on the surface of revolution. The beam apertures are (a) 9 mm and (c) 6 mm, with main lobes of
widths of (a) 30 μm and (c) 33 μm.
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surface has to be of the order of millimeters, a regime in
which practically all macroscopic optical components
exist. (The exceptions are microlenses, microcavities,
single-mode fibers, etc.) We are interested in waves
propagating in the z direction. The simplest cases are
the transverse electric (TE) modes, for which the electric
field has no z component; hence, they are x polarized, in

the form ~Eðz; x; hÞ ¼ ½0;ϕðz; xÞξðhÞ; 0�, which yields

1
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Here, n0 is the refractive index in the surface layer, k0 is the
vacuum wave number, and q has units of 1=m.
The boundary conditions here yield some unexpected

implications. Naturally, beams propagating on surfaces of
revolution must fulfill periodic boundary conditions for
every z. Thus, we first find solutions in an infinite space and
then use their superpositions to construct solutions satisfy-
ing periodic boundary conditions. This methodology serves
as a powerful tool to find the solutions in the linear regime
[VNLðϕÞ ¼ 0] where superposition holds. To do that, we
use the universal covering space: a covering map of an
infinite 1D space mapped to a ring on the surface (points
having the same z. Each point on the surface is an image
of an infinite number of points located in the universal
covering space. We use the covering map to construct
solutions as follows:

ϕpðz; xpÞ ¼
X∞

m¼−∞
ϕðz; xþ 2πmR0Þ: (4)

ϕp is a solution of Eq. (3a) satisfying periodic boundary
conditions, where xp, x ∈ ½0; 2π�. Equation (4) reflects the
fact that Eq. (3a) is linear in ϕ [that is, when VNLðϕÞ ¼ 0].
First, we focus on the paraxial regime and derive the

equation for the slowly varying amplitude ψðz; xÞ, assum-
ing that j∂2ψ=∂z2j ≪ j2q∂ψ=∂zj. We use the ansatz
ϕðz; xÞ ¼ 1ffiffi

γ
p ψðz; xÞeiqz, where the field amplitude

ϕðz; xÞ varies with the algebraic factor
ffiffiffi
γ

p
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to be conserved. This ansatz yields the paraxial equation for
a general surface of revolution:
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where the effective one-dimensional potential depends on
the determinant of the surface VeffðzÞ ¼ ½ ffiffiffi

γ
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=ð1= ffiffiffi
γ

p Þz�z.
Clearly, the paraxial equation describing the propagation
of EM waves within surfaces of revolution involves
more complex evolution than the propagation of an optical
beam in flat space. First, the surface curvature acts

as a z-dependent one-dimensional potential even for
homogeneous surfaces. Second, the spatial frequencies
vary during propagation, in analogy to the redshift and
blueshift occurring in curved space-time. Consequently, the
shapes of the eigenmodes describing the waves propagating
in such a surface evolve when the curvature of space varies
during propagation.
We seek an accelerating solution to Eq. (5), namely, a

solution that is propagation invariant in the accelerating
frame of reference. Such solutions should satisfy
jψð0; xÞj ¼ jψ ½z; x − fðzÞ�j, meaning that the beam would
propagate along the curve x ¼ fðzÞ while maintaining its
intensity structure. We want to transform Eq. (5) to the
paraxial equation in flat space and use the known solution
of the accelerating Airy beam. To do that, we first cancel
the effective potential using a gauge transformation

~ψ ¼ ψe−ði=2qÞ
R
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0
Veffðz0Þdz0 . Then, we use a transformation

of coordinates of the form ~z ¼ R
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accelerating beam in curved space to be
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where a is a constant with units ½a� ¼ 1=m3. The expres-
sion for the trajectory [fðzÞ] of the Airy beam in curved
space is given by

fðzÞ ¼ a
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2q

Z
z

0

1

γ
dz0

�
2

: (7)

Equation (7) defines acceleration trajectories that depend
on the metric determinant. Consequently, the acceleration
trajectory is different for every surface of revolution and
can even become nonconvex in x, as shown in Fig. 1.
Notice that, generally, the accelerating solution of Eq. (5) is
not shape preserving because jψ j2 varies with z. However, it
is self-similar and can become narrower or broader during
propagation, according to the geometry of the specific
surface [47].
To understand the origin of the nongeodesic trajectory,

we introduce a particle model to describe the trajectory of
the main lobe of the accelerating beam. We account for the
interference effect through an inhomogeneous term in the
geodesic equation:

d2x
dλ2

þ γz
γ

dx
dλ

dz
dλ

¼
~Fffiffiffi
γ

p ; (8)

where λ is an affine parameter that, in this case, can be
the line element. This equation describes the motion of a
particle in a surface of revolution under the influence of a
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force, where ~F has the dimensions of force per unit of mass
when λ is taken to be time. Obviously, ~F is a “fictitious”
force because no real force is acting here. Constraining
the motion of the particle to the paraxial regime jdx=dzj≪1
yields the approximate line element dλ¼dzf1þ1

2
dx2=

dz2þO½ðdx2=dz2Þ2�g. To first order, Eq. (8) becomes

d2x
dz2

þ γz
γ

dx
dz

¼
~Fffiffiffi
γ

p : (9)

Here, the “fictitious” force ~F ¼ a=kð ffiffiffi
γ

p Þ3, which mani-
fests the interference effect induced by the structure of
the wave packet and also reflects the dependence on the
curvature of the surface of revolution. This “fictitious”
force is a unique wave phenomenon that a particle model
cannot describe. While propagating on a surface of revo-
lution, the arc length is stretched as dλ ¼ ffiffiffi

γ
p

dx; hence, the
spatial frequencies of the beam are stretched with an
opposite trend. This stretching changes the “fictitious”
force ~F by a factor of ð ffiffiffi

γ
p Þ3, as can be seen directly from

the cubic phase of the accelerating beam in k space. The
solution for xðzÞ in Eq. (9) is exactly the trajectory of the
Airy beam fðzÞ, from Eq. (7).
The nonparabolic acceleration trajectories in curved space

can be understood by examining Eq. (9), which manifests the
interplay between the effect of the curvature and the effect of
interference. The right-hand side comes from the interference
effect, acting as if an effective potential exerts a “fictitious”
force on thewave packet. In flat space, the second term on the
left is zero because γ ¼ const, and the equation becomes the
Newton equation for a particle under a constant force, which
yields a parabolic trajectory. The same parabolic trajectory is
the trajectory of the Airy beam in flat space. Clearly, the
curvature of space has a major effect on the trajectory
of the beam, through the “fictitious” force. However, the
curvature
also gives rise to another term in Eq. (9): the second term
γz=γ, which is one of the two nonzero Christoffel symbols.
Thus far, we have generalized the paraxial accelerating

beam to curved space and showed the various trajectories
possible that are not the natural geodesics of these surfaces,
but we have not found the actual solutions as of yet. To do
that, we construct a beam that propagates on the trajectories
defined by Eq. (7) and also fulfills periodic boundary
conditions, as necessary for surfaces of revolution. Such
solutions are naturally periodic [48] and they are obtained
from the Airy solution defined on the universal covering
space, using Eq. (4):
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where km ¼ m=R0 and m is an integer. The initial beam
(the beam at z ¼ 0) is actually an infinite Airy beam that is
wrapped on a circular perimeter, over and over again. This
solution satisfies Eq. (5) and also the periodic boundary
conditions. These conditions can be satisfied only by
specific (quantized) values of transverse momentum.
Hence, the beam is composed of a discrete set of “spectral
functions.” To stay within paraxiality, we limit the spatial
spectrum from above, by setting Cm ¼ 0 for every spatial
frequency above the kM defining the boundary of the
paraxial regime. Importantly, the number of these spectral
functions comprising the beam is constrained both from
below and from above: The lowest transverse wave number
that can be excited when the beam is launched (at z ¼ 0)
is k1 ¼ 1=R0, while the highest kM ¼ M=R0 occurs for
m ¼ M. This finite range within which the spatial frequen-
cies of the accelerating beam can exist has immediate
physical consequences: Such a curved-space accelerating
beam carries finite power because it is constrained to a
circular perimeter and constructed from a finite number of
spatial frequencies, due to the cutoff. This finding has an
important implication: Having a finite power, one can now
define a center of mass for the accelerating beam. It is
important to emphasize that although the self-reconstructing
structure of the wave packet travels along a nongeodesic
trajectory, the center of mass travels along a geodesic
trajectory as in Refs. [17,18]. However, almost all the
applications of accelerating beams rely on light-matter
interactions, where the important parameter is the local
intensity and not the center of mass, e.g., acceleration of
particles [35], formation of curved plasma channels [37],
lasermachining [49], to name a few out ofmany. For all such
applications, what matters is the accelerating main lobe
where the intensity is thehighest,while the fact that thecenter
of mass is propagating on a straight line is unimportant.
In examining the structure of the curved-space accel-

erating beam, we notice that it can be different from the
Airy beam, whose envelope is monotonically decaying.
Here, the shape-preserving wave packet accelerating in
curved space can have several parallel beams whose
number is set by the initial choice of the spectral compo-
nents Cm.
The accelerating solution in curved space is propagating

on the curve defined by Eq. (7) and is periodically shape
invariant: It recreates its exact intensity profile in xp for

discrete z values defined by
R zq
0

1
γ dz

0 ¼ 2ql
aR0

, where l is an
integer. Notice the nonconstant spacing between planes of
self-reconstruction that depends on the curvature of space.
This interesting feature results from the transverse momen-
tum being quantized (rather than continuous). Interestingly,
a also determines the curvature of the trajectory: The faster
the beam accelerates, the faster it recreates itself.
After having presented the paraxial accelerating beams

in curved space and their properties, we now proceed
to the nonparaxial beams that are solutions of Maxwell’s
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equations on surfaces of revolution. We begin with
Eq. (3a), which describes the linear nonparaxial regime.
We apply a transformation of coordinates that simplifies
the equation for any surface of revolution. We set
Z ¼ R

~z
0

1ffiffiffiffiffiffiffi
γðz0Þ

p dz0, which yields

∂x
2ϕþ ∂Z

2ϕþ γq2ϕ ¼ 0. (11)

Clearly, the nonparaxial case is more complicated than the
paraxial one: Eq. (11) is essentially the Helmholtz equation
with a z-dependent refractive index. Equation (15) allows
back propagation and back reflections. Here, we look only
for a forward-propagating wave packet. Since we cannot
solve at this point for the most general case, we examine
three generic solutions that allow for close-form solutions.
The first case of a surface of revolution is a cylinder, where
the metric determinant is not z dependent: γðzÞ ¼ 1. The
solution in the covering space coincides with the form of
the solution in flat space, which is described in detail in
Ref. [39]. Using the same method we used for the paraxial
beam [Eq. (4)], we construct the accelerating wave packet:

ϕ̂ðZ;xpÞ¼
X
qn

Dnexpfiβqnþ iq½xpcosðqnÞþZsinðqnÞ�g:

(12)

We choose Dn ¼ 0 for any qn that is not between 0 and π,
meaning that we allow only forward-propagating waves
(i.e., we assume that the backward-propagating waves are
not excited at z ¼ 0). This wave packet is constructed from
a discrete set of spatial frequencies that fulfill the periodic
boundary conditions: qn ¼ arccosðn=qR0Þ (see Fig. 2). The

spectrum is now limited from above because at a high
enough spatial frequency, the propagation constant
becomes imaginary and the spectral function becomes
evanescent. Here, we are not interested in the evanescent
waves; hence, we set their initial population to zero
(Dn ¼ 0 for those modes). This nonparaxial accelerating
beam carries finite power. In fact, the solution can support
several parallel beams accelerating (bending) in parallel, as
in the paraxial case, for a suitable choice of Dn. As for the
nonparaxial flat-space accelerating beams [39], this non-
paraxial curved-space wave packet is approximately shape
invariant because it is a superposition of only forward-
propagating waves (0 < qn < π). If the counterpropagating
waves were to be taken in the superposition, the beam
would have been fully shape preserving. Nevertheless, this
wave packet (Fig. 2) accelerates on a circular trajectory
while bending to very large (almost 90°) nonparaxial
angles. The beam reconstructs itself in discrete angles
in the x, z plane, specifically for θn ¼ arccosðn=qR0Þ. We
point out, however, that as R0 becomes smaller, there are
fewer propagating modes, and the acceleration that is an
outcome of the interference between the modes decreases.
Eventually, when R0 becomes smaller than the wavelength
of the light, all the excited spatial functions become
evanescent. Equation (12) defines a family of solutions
for a given trajectory, where every β gives a beam with a
different structure. Thus, every superposition of such
beams (of various values of β) also forms a periodically
shape-preserving accelerating beam.
Having solved for the simplest nonparaxial surface of

revolution (a cylinder, where the metric is not z dependent),
the natural question to ask is whether a nonparaxial

FIG. 2. Periodic accelerating beams constructed from discrete spatial frequencies as they propagate on various cylinders. This wave
packet travels along circular trajectories while bending to very large nonparaxial angles. (a) The wave packet consists of several parallel
beams that depend on the initial choice of Dn; only every fifth spectral function is populated, each with D5n ¼ 1. (b) Schematic
illustration of the periodic accelerating beam in k space. The beam is constructed from discrete spatial frequencies that reside in a half-
circle in k space. This beam is a superposition of only forward-propagating waves. (d) Periodic accelerating beam on a cylinder,
displaying a single intense main lobe (Dn ¼ 1). (c),(e) The beams from (a) and (d) propagating on a surface of a cylinder.
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accelerating shape-invariant solution can exist for surfaces
with a z-dependent curvature. Finding these kinds of
solution is especially challenging because they cannot rely
on the symmetry between all space coordinates, since this
symmetry is inherently broken. Going back to Eq. (3a), we
simplify the equation using ϕðz; xÞ ¼ 1=γ1=4ζðz; xÞ, which
cancels the term with the first derivative in respect to z,
yielding

∂x
2ζþγ∂z

2ζþγ

�
1

4
½ð ffiffiffi

γ
p Þz�2=γ−1

2
ð ffiffiffi

γ
p Þzz=

ffiffiffi
γ

p þq2
�
ζ¼0.

(13)

This equation is a Helmholtz-type equation with two
differences: (1) There is an additional term that gives a
z-dependent addition to the effective wave number, and
(2) the z-dependent metric multiplies all the terms except
for the derivative with respect to x. We want to transform
Eq. (13) to a Helmholtz equation with a constant effective
wave number. For this cause, we choose two specific
surfaces, one with positive curvature and one with negative
curvature, that will give a constant effective wave number:
γp ¼ cos4ðκzÞ, γn ¼ cosh4ðκzÞ. Equation (13) then sim-
plifies to

∂x
2ζ=γ þ ∂z

2ζ þ ðq2 � κ2Þζ ¼ 0; (14)

where the � sign stands for the positive and negative
curvatures, respectively. Following the same approximation
regarding the slow change in curvature on the scale of a
wavelength, we assume that κ ≪ 1=R0. We find the
accelerating wave packets on these surfaces to be

ϕ̂ðz; xpÞ ¼ 1=ðγ1;2Þ1=4
X
qn

Dn exp
n
iβqn þ i

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q2 � κ2

q

×
h
xp

ffiffiffiffiffiffiffi
γ1;2

p
cosðqnÞ þ z sinðqnÞ

io
: (15)

These accelerating solutions are traveling along a non-
circular trajectory, bending to very large angles (as dis-
played in Fig. 3). These noncircular trajectories can be
easily understood in k-space, where the transverse spatial
frequencies vary while the beam is propagating in the z
direction. The change in the spatial frequencies can cause a
propagating mode to become evanescent while propagating
in z. When this disappearance of modes occurs, the wave
packet is no longer shape invariant. This effect of propa-
gating modes that become evanescent is similar to known
effects in different optical settings [50,51]. However, the
modes in our system display strong anisotropy in their
structure (radial vs azimuthal); hence, our system can
support modes with complex structured azimuthal infor-
mation that become evanescent. One of the most fascinat-
ing features is that the trajectory can even flip to the other
direction—and accelerate toward the direction of the other

lobes (see Fig. 3). The reason is that the metric changes in
the z direction; however after some z-value, the z-direction
is no longer the direction normal to the wave front, due to
the nonparaxial trajectory. This interesting feature could not
be seen in the paraxial case [52]. Naturally, this wave
packet is also constructed only from a discrete set of spatial
frequencies: qn ¼ arccos½n=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
γðq2 � κ2Þ

p
R0�. The discreti-

zation of the frequencies has a major impact on the profile
of the wave packets, and it differs from that in flat space.
Finally, we return to the nonlinear case. For reasons of

simplicity, we will deal here only with the paraxial regime.
We seek a propagation-invariant solution of the paraxial
nonlinear equation [Eq. (5)] traveling along a nongeodesic
trajectory. Specifically, consider the Kerr effect, in which
VNL ¼ κjψ j2=γ, where κ is the effective nonlinear coef-
ficient. We seek solutions (in the universal covering space)
satisfying jψð0; xÞj ¼ jψ ½z; x − fðzÞ�j and obtain an equa-
tion for the amplitude of the beam uð~xÞ:

~u~x ~x − ~x ~uþsgnðκÞ ~u3 ¼ 0; (16)

where ~x ¼ ffiffiffi
c3

p ½x − fðzÞ� and ~u ¼ κ=c2=3u. The trajectory is
the same as in the linear case [Eq. (7)]. We solve Eq. (16)
numerically for the focusing and defocusing cases (κ > 0
and κ < 0, respectively). The only free parameters in our
solution are the initial conditions. To find the wave
function, we assume that the nonlinear accelerating beam
decays for ~x → ∞; thus, the nonlinear term in Eq. (16) is
negligible for ~x → ∞. Therefore, we choose the initial
condition to be ~u ¼ C · Airyð~xÞ for ~x → ∞. Typical shape-
preserving solutions are shown in Fig. 4. These wave
packets are propagating in a self-similar fashion, similar to

FIG. 3. Nonparaxial accelerating wave packets as they propa-
gate on two kinds of surface, with (b) negative and (c) positive
curvature. These wave packets propagate on various trajectories
determined by the initial beam launched and the curvature of
space. The propagation of the same beam on the surface of a
cylinder is displayed in (a) for comparison. The spectral functions
vary during propagation; in (b), at some propagation distance, the
beam stops accelerating because all spectral frequencies become
evanescent, and in (c), the trajectory of the beam becomes
nonconvex. (The wavelength of the light in all figures is 0.5 μm.)
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their linear counterparts. However, for the focusing case,
we find beams with narrower lobes than for the linear
beam, and for the defocusing case, we find beams with
broader lobes. The solution for the focusing case exists
for any n0C2κ=k02 > 0, whereas for the defocusing case,
the solution exists only for a finite range of −2.5 <
n0κC2=k02 < 0 (in accordance with Ref. [31]). Next, we
check the stability of our solutions and find the solution for
the defocusing case to be stable under random “white”
noise, whereas the self-focusing solutions become unstable
after some propagation distance. The most interesting
feature is that the stability of the beam depends on the
curvature: By changing the parameters of the surface, we
can make the beam stable for considerably larger distances
(possibly even indefinite ones), as shown in Fig 4. This
effect of the curvature on the stability suggests an option for
stabilizing nonlinear accelerating beams using the curva-
ture of space, and is directly related to the instability of
solitons in negatively curved space [53]. To augment this
nonlinear section, we note that other saturable nonlinear-
ities can be handled in a similar fashion, as was done in
Ref. [31] for flat space.
The ideas presented here can be implemented in an

optical experiment using a thin dielectric layer waveguide
on the surface of a 3D shape. The thickness and refractive
index of the layer should be chosen to allow only a single
mode for ξ, which is calculated easily from Eq. (3b).
Observing the propagation dynamics of the accelerating
beam inside such a 2D curved-space waveguide surface is
possible by examining the input and output beam, by
investigating the tails of the modes outside the surface

waveguide, and, most importantly, by viewing the light
scattered from inhomogeneous material and imperfections
inside the surface waveguide or the light fluorescing from
it. Moreover, the concepts presented here on accelerating
wave packets in curved space are rather general: They can
also be used in other optical systems, for example, surface
plasmons on curved metallic surfaces. The last decade has
witnessed extensive research on the enhancement of the
EM fields on metallic shapes, such as spheres and tips, with
many applications ranging from commercial products such
as near-field microscopes to novel therapeutic applications
with small particles [54,55]. The ideas we present here
allow manipulation of the peak intensity of EM wave
packets on curved surfaces by designing the initial con-
ditions (the launch beam). Understanding the dynamics of
wave packets in curved space and controlling them by
predesigning the launch beam, as presented here, can
enable many more new ideas, initiate new therapeutic
possibilities, and enable improvement in the enhancement
of the EM field for a given geometry. Furthermore,
recalling that plasmonic systems always have considerable
losses, the wave packets can be designed to compensate for
the losses and greatly extend the range for which the main
lobe (peak intensity value and shape) remains shape
invariant in spite of the losses, as presented in Ref. [56].
Further interesting research will also include the explo-

ration of EM waves in topological surfaces, for example, a
doughnut shape. Can we control the trajectory of a wave
packet in a surface with a nonzero Chern number just by
the design of the initial beam profile? What would be
different for a wave packet propagating in a curved space

FIG. 4. (a)–(c) Profile of a nonlinear acceleratingwave packet in curved space under (a) defocusing and (b),(c) focusingKerr nonlinearity.
The profile differs from the nonlinear accelerating beam: For the defocusing case, the lobes are wider than the linear Airy beam, whereas
for the focusing case, the lobes are much thinner. (d)–(f) Evolution of the nonlinear wave packets [of (a)–(c)] on the surface area of a
hyperboloid with randomnoise (of 2%). (d)Defocusing nonlinearity supports stable propagation, whereas (e) for strong focusing, the beam
become unstable to noise. (f) Evolution of the beam of (e) under different surface parameters can stabilize the beam.
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with nontrivial topology, for example, crossing the surface
of a doughnut from the outside to the center of its hole?
These questions are interesting for two reasons: first,
because of the extensive interest in topological metrics,
such as the known Schwarzschild metric of a black
hole, and second, in the spirit of the optical topological
effects (photonic topological insulators) observed
recently [57].
Before concluding, it is worth discussing the similarities

and differences between our findings in curved space and
related effects in flat-space metamaterials or photonic
potentials in which the EM environment is engineered to
correspond to the fictitious force occurring in curved space.
In both cases, the behavior of the EM waves can be
described by the Maxwell equations in general coordinates,
and in both, an optical beam would propagate as if a
fictitious force is acting upon it. However, there are some
major differences between EM waves in curved space and
EM waves in such specifically engineered metamaterials.
The principal difference is that in 3D curved-space settings
like ours, where the beam is propagating within a thin layer
surrounding a 3D volume, the actual “environment” poses
restrictions on the EM fields. The simplest example is the
one we gave above: Any surface of revolution imposes
periodic boundary conditions on the EM field. These
conditions underline new solutions of the Maxwell equa-
tions: accelerating wave packets that go around the cylin-
drically symmetric 3D body. Even this simple example
does not exist in metamaterials in flat space because there is
no way to make the beam go around in flat space under a
constant fictitious force as it does in the above examples.
Clearly, there are many other examples that are funda-
mentally even more intriguing. For example, curved space
formed by a thin layer surrounding 3D bodies with non-
trivial topology, such as the doughnut discussed above, will
impose boundary conditions that cannot be implemented
in any flat space—even those made of metamaterials. The
very fact that the curved space is formed by surrounding an
actual 3D body makes a major difference that cannot be
imitated in flat space. In the same vein, in our types of
geometry, when the 3D body becomes sufficiently narrow,
the waves propagating on opposite sides of the body couple
to one another, giving rise to new physics that does not exist
in flat space.
To summarize, we have found linear and nonlinear,

paraxial and nonparaxial, spatially accelerating wave pack-
ets in curved space, thereby introducing the concept of
accelerating beams to curved-space geometry. The relation
of this work to general relativity opens up many ideas for
future exploration. For example, one can design a wave
front that would be able to compensate for gravitational
effects. Indeed, we are currently working on the nonlinear
version of this idea, where the accelerating wave packet is
what causes the effective curving in space, in an optically
nonlinear medium.
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